
MECH 401 
Mechanical Design Applications
Dr. M. K. O’Malley – Master Notes

Spring 2008
Dr. D. M. McStravick
Rice University



Design Considerations

Stress
Deflection
Strain
Stiffness
Stability

Stress and strain relationships can be studied 
with Mohr’s circle

Often the controlling factor



Deflection

When loads are applied, we have deflection
Depends on

Type of loading
Tension
Compression
Bending 
Torsion

Cross-section of member
Comparable to pushing on a spring

We can calculate the amount of beam deflection by 
various methods



Superposition

Determine effects of individual loads separately and 
add the results
Tables are useful – see A-9
May be applied if

Each effect is linearly related to the load that produces it
A load does not create a condition that affects the result of 
another load
Deformations resulting from any specific load are not large 
enough to appreciably alter the geometric relations of the 
parts of the structural system



Deflection
There are situations where the tables are insufficient
We can use energy-methods in these circumstances
Define strain energy

Define strain energy density**

V – volume

Put in terms of σ, ε
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Example – beam in bending
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Castigliano’s Theorem

Deflection at any point along a beam subjected to n loads may 
be expressed as the partial derivative of the strain energy of 
the structure WRT the load at that point

We can derive the strain energy equations as we did for 
bending 
Then we take the partial derivative to determine the deflection 
equation
Plug in load and solve!
If there is no load acting at the point of interest, add a dummy
load Q, work out equations, then set Q = 0
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Castigliano Example

Beam AB supports a uniformly 
distributed load w.  Determine the 
deflection at A.

No load acting specifically at point A!
Apply a dummy load Q

Substitute expressions for M, M/ 
QA, and QA (=0)

We directed QA downward and found 
A to be positive

Defection is in same direction as QA
(downward)
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Stability

Up until now, 2 primary concerns
Strength of a structure

It’s ability to support a specified load without 
experiencing excessive stress

Ability of a structure to support a specified 
load without undergoing unacceptable 
deformations

Now, look at STABILITY of the structure
It’s ability to support a load without 
undergoing a sudden change in configuration

Material
failure



Buckling

Buckling is a mode of failure that does not depend 
on stress or strength, but rather on structural 
stiffness
Examples:



More buckling examples…



Buckling

The most common problem involving 
buckling is the design of columns 

Compression members
The analysis of an element in buckling 
involves establishing a differential equation(s) 
for beam deformation and finding the solution 
to the ODE, then determining which solutions 
are stable
Euler solved this problem for columns



Euler Column Formula

Where C is as follows:
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Buckling

Geometry is crucial to correct analysis
Euler – “long” columns
Johnson – “intermediate” length columns
Determine difference by slenderness ratio

The point is that a designer must be alert to 
the possibility of buckling
A structure must not only be strong enough, 
but must also be sufficiently rigid



Buckling Stress vs. Slenderness Ratio



Johnson Equation for Buckling



Solving buckling problems
Find Euler-Johnson tangent point with

For Le/ρ < tangent point (“intermediate”), use Johnson’s Equation:

For Le/ρ > tangent point (“long”), use Euler’s equation:

For Le/ρ < 10 (“short”), Scr Sy

If length is unknown, predict whether it is “long” or “intermediate”, use the 
appropriate equation, then check using the Euler-Johnson tangent point once 
you have a numerical solution for the critical strength

2

2

⎟
⎠

⎞
⎜
⎝

⎛
=

ρ

π

e

cr
L

ES

y

e

S
EL 22π

ρ
=

2

2

2

4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ρπ
ey

ycr
L

E
S

SS



Special Buckling Cases

Buckling in very long Pipe
2

2

L
EIcPcrit

π
=

Note Pcrit is inversely related to length squared
A tiny load will cause buckling
L = 10 feet vs. L = 1000 feet:

Pcrit1000/Pcrit10 = 0.0001

•Buckling under hydrostatic Pressure



Pipe in Horizontal Pipe Buckling Diagram



Far End vs. Input Load with Buckling





Buckling Length: Fiberglass vs. Steel



Impact
Dynamic loading

Impact – Chapter 5
Fatigue – Chapter 7

Shock loading = sudden loading
Examples?
3 categories

Rapidly moving loads of constant magnitude
Driving over a bridge

Suddenly applied loads
Explosion, combustion

Direct impact
Pile driver, jack hammer, auto crash

Increasing
Severity



Impact, cont.

It is difficult to define the time rates of load application
Leads to use of empirically determined stress impact factors
If τ is time constant of the system, where

We can define the load type by the time required to apply the 
load (tAL = time required to apply the load)

Static

“Gray area”

Dynamic

k
mπτ 2=
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Stress and deflection due to impact

W – freely falling mass
k – structure with stiffness (usually large)
Assumptions

Mass of structure is negligible
Deflections within the mass are negligible
Damping is negligible

Equations are only a GUIDE
h is height of freely falling mass before its release
δ is the amount of deflection of the spring/structure



Impact Assumptions



Impact Energy 
Balance



Energy balance

Fe is the equivalent static force 
necessary to create an amount of 
deflection equal to δ 
½ because spring takes load gradually
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Impact, cont.

Sometimes we know velocity at impact rather than 
the height of the fall
An energy balance gives:
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Pinger  Pulse Setup



Pinger



Pressure Pulse in Small Diameter Tubing



1500 Foot Pulse Test
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